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Abstract. We have analyzed the most recent available Super-Kamiokande data in a three flavor neutrino
oscillation model. We have here neglected possible matter effects and we performed a fit to atmospheric
and solar Super-Kamiokande data. We have investigated a large parameter range where the mixing angles
were restricted to 0 ≤ θi ≤ π/2, i = 1, 2, 3, and the mass squared differences were taken to be in the
intervals 10−11 eV2 ≤ ∆m2 ≤ 10−2 eV2 and 10−4 eV2 ≤ ∆M2 ≤ 10 eV2, i.e., the hierarchy between the
mass squared differences is not completely determined. This yielded a best solution characterized by the
parameter values θ1 � 45◦, θ2 � 10◦, θ3 � 45◦, ∆m2 � 4.4 × 10−10 eV2, and ∆M2 � 1.01 × 10−3 eV2,
which shows that the analyzed experimental data speak in favor of a bimaximal mixing scenario with one
of the mass squared differences in the “just-so” domain and the other one in the range capable of providing
a solution to the atmospheric neutrino problem.

1 Introduction

Most of the analyses concerning neutrino oscillations have
so far been done within the framework of the theory of two
flavor neutrino oscillation. In these scenarios, the observed
deficit of solar electron neutrinos is usually explained by
means of νe ↔ νµ oscillations, whereas the lack of atmo-
spheric muon neutrinos is interpreted as a consequence of
νµ ↔ ντ oscillations. The main advantage of the two fla-
vor oscillation scenario is that the oscillation probability
depends on only two parameters, the mass squared differ-
ence ∆m2 and the mixing angle θ.

Recently, it was pointed out by several authors that
in some cases the interpretation of the experimental data
in terms of two flavor oscillations might yield mislead-
ing and sometimes even wrong results (see, e.g., [1]) and
that a three flavor oscillation description is to be favored.
Unfortunately, the oscillation probabilities depend in this
case on five parameters, two mass squared differences and
three mixing angles, which makes it quite hard to deal
with the dependence of the probability functions on these
parameters.

The most popular three flavor neutrino oscillation sce-
nario is the so-called bimaximal mixing scenario [2,3],
where two of the mixing angles are maximal, i.e., they
have values of about 45◦, whereas the remaining one is re-
stricted by the CHOOZ experiment to be rather small, at
least for certain parameter ranges [4]. The three flavor os-
cillation scenario can then be shown to decouple into two
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distinct scenarios involving two flavors, in which case it is
of course much easier to perform a fit to the experimental
data. Many authors [5] use the CHOOZ result to simplify
the oscillation probability formulas for three flavors and
then perform a fit of the two decoupled two flavor neutrino
oscillation scenarios to the experimental data.

In this paper, we will present a numerical fit within
a three flavor neutrino mixing scenario to the zenith an-
gle distribution of 850 day atmospheric neutrino Super-
Kamiokande data and 708 day solar neutrino Super-
Kamiokande data. However, we will not make any assump-
tions about the parameters on which the oscillation prob-
ability formulas depend, i.e., we fit the scenario in the
most general case and for a large parameter range to the
experimental data.

The paper is organized as follows. In Sect. 2, we sum-
marize the basic features of three flavor neutrino oscilla-
tion theory. In Sect. 3, we present the choice of experimen-
tal data and in Sect. 4, we discuss the minimization pro-
cedure. In Sect. 5, we give the obtained solutions of the
minimization problem, which are interpreted in Sect. 6.
The fits corresponding to the solutions are discussed and
compared in Sect. 7 and then these solutions are tested for
stability in Sect. 8. Finally, Sect. 9 contains a summary and
our conclusions.

2 Theory of three flavor neutrino oscillations

In three flavor neutrino oscillation theory one assumes the
neutrino states with definite flavor |να〉, α = e, µ, τ , to
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be linear superpositions of states with definite mass |νi〉,
i = 1, 2, 3,

|να〉 =
3∑

i=1

U∗
αi|νi〉, α = e, µ, τ. (1)

The unitary mixing matrix U is called the Cabibbo–
Kobayashi–Maskawa (CKM) matrix and can generally be
parameterized by three mixing angles θi, where i = 1, 2, 3,
and three CP -violating phases. One of the latter was re-
cently claimed to be observable by the next generation
neutrino detectors [6] and could lead to physically very
interesting consequences. The other two can be shown to
cause no physical effects. However, for this analysis these
phases are too small to be important and we will neglect
them in what follows. This implies Uαi = U∗

αi and there-
fore we can write the CKM matrix in its (real) standard
parameterization [7] as

U =


 c2c3 s3c2 s2

−s3c1 − s1s2c3 c1c3 − s1s2s3 s1c2
s1s3 − s2c1c3 −s1c3 − s2s3c1 c1c2


 , (2)

where si ≡ sin θi and ci ≡ cos θi. The probability for de-
tection of a neutrino of flavor β in a beam of neutrinos
consisting exclusively of flavor α at the source of the beam
is for three flavors given by

Pαβ = δαβ − 4
3∑

i=1

3∑
j=1

i<j

UαiUβiUαjUβj sin2

(
∆m2

ijL

4E

)
,

α, β = e, µ, τ, (3)

where δαβ is Kronecker’s delta, L is the distance from
the source to the detector, E is the neutrino energy, and
∆m2

ij is the difference between the squares of the masses
corresponding to the mass eigenstates |νi〉 and |νj〉. Since

∆m2
21 +∆m2

32 +∆m2
13 = 0, (4)

the mass squared differences are not linearly independent,
and it is convenient to choose

∆m2 ≡ ∆m2
21, (5)

∆M2 ≡ ∆m2
32, (6)

from which follows that

∆m2
31 = −∆m2

13 = ∆m2 +∆M2. (7)

So far we have considered the neutrino states to be plane
waves, i.e., to have a definite momentum. Since the neu-
trino state is neither produced nor detected with a definite
momentum or propagation length, one has to average over
L/E as well as other uncertainties in production and de-
tection. We will here follow closely [1] and assume that
these uncertainties to be described by a Gaussian average

〈Pαβ〉 =
∫ ∞

−∞
Pαβ(x)f(x)dx, (8)

where

f(x) =
1

γ
√
2π

exp
{

− (x − l)2

2γ2

}
(9)

and x ≡ L/E. Inserting formula (3) for Pαβ yields

〈Pαβ〉 = δαβ − 2
3∑

i=1

3∑
j=1

i<j

UαiUβiUαjUβj (10)

× [
1− cos(2l∆m2

ij) exp{−2γ2(∆m2
ij)

2}] ,
where l is given by

l � 1.27
〈
L

E

〉
� 1.27

〈L〉
〈E〉 (11)

and therefore related to the sensitivity of the experiment.
〈L〉 should here be expressed in meters, whereas 〈E〉
should be expressed in MeV. The parameter γ is the so-
called damping factor and in accordance with [1] we will
choose

γ =
L

E

(
∆L

L
+

∆E

E

)
, (12)

where∆E and∆L are the uncertainties in neutrino energy
and propagation length, respectively.

For large values of γ

exp{−2γ2(∆m2
ij)

2} → 0

and the oscillation term vanishes. The transition probabil-
ity then becomes a constant dependent on the values of the
mixing angles; the oscillation is said to become “washed
out”. To proceed, one now has to determine the values
of the parameters L,E,∆L, and ∆E for the experiments
under consideration.

3 Choice of experimental data

We are going to consider three types of Super-Kamiokande
data: multi-GeV e-like atmospheric neutrino data, multi-
GeV µ-like atmospheric neutrino data and solar neutrino
data.

3.1 Solar neutrino data

The probabilities were taken from [8] for 14 data points in
an energy range from 6MeV to 12MeV. The probability
is almost constant for all 14 data points. The path length
for solar neutrinos is given by the distance from the Sun
to Earth (L � 1.44 × 1011 m) and the uncertainty of the
path length is here assumed to be negligible compared to
L, i.e.,

∆L

L
� 0. (13)

The damping factor then becomes

γ � L

E

∆E

E
, (14)

where ∆E = 0.5MeV is the energy resolution of the ex-
periment.
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3.2 Atmospheric neutrino data

The atmospheric neutrino data are divided into atmo-
spheric multi-GeV e-like events and atmospheric multi-
GeV µ-like events. In both cases, the flux measurements
are performed for five bins, i.e., for five different values,

cos θ = −0.8,−0.4, 0, 0.4, 0.8,
of the zenith angle θ, which is defined as the angle between
the direction of the measurement and the axis through ex-
periment and the middle of the Earth. Therefore, cos θ =
−1 corresponds to straight upward going neutrinos,
whereas for cos θ = 1 the neutrinos are produced in the
atmosphere right above the detector.

The experimental data used are 850 day Super-Kamio-
kande data and Monte Carlo no-oscillation predictions for
40 years generated lifetime for the five bins. The corre-
sponding errors were taken from [9].

The results of the Super-Kamiokande experiment are
usually presented by means of the “ratio of the ratios”

R =
Φµ

Φe
(data)/

Φµ

Φe
(MC), (15)

where Φα is the flux of neutrino flavor α.
In Summer 1998, the Super-Kamiokande Collabora-

tion published experimental values for this “ratio of the
ratios” of R = 0.63 ± 0.03(stat) ± 0.05(sys) for sub-GeV
events and R = 0.65 ± 0.03(stat) ± 0.08(sys) for multi-
GeV events [10], which was the first direct observation of
neutrino oscillations.

However, to be able to fit both e-like and µ-like data to
the measurements, we will use here the directly measured
disappearance rates

Re =
Φe(data)
Φe(MC)

(16)

for e-like events and

Rµ =
Φµ(data)
Φµ(MC)

(17)

for µ-like events. The main disadvantage of this is the un-
certainty in the expected neutrino flux, which was claimed
to be up to 20% [11], due to the unknown flux of cosmic
particles hitting the atmosphere. To handle this one can
introduce an overall flux uncertainty factor η with val-
ues between 0.8 and 1.2. The actual neutrino flux for the
neutrino flavor α is then given by Φ̃α = ηΦα. Thus, in
the absence of neutrino oscillations, the ratio between the
theoretical and the measured fluxes would just be Rα = η,
whereas otherwise one obtains

Rα =
Φ̃ePeα + Φ̃µPµα + Φ̃τPτα

Φα
, α = e, µ, τ, (18)

where Pαβ is the transition probability from α to β; see
Sect. 2. In what follows, we are going to neglect the τ
contribution due to too small production cross sections.

The uncertainty in the flux of cosmic rays is then an overall
factor common to the ratios Rα, where α = e, µ, of the
both remaining neutrino flavors. Denoting R ≡ Φµ/Φe,
one obtains

Re = η(Pee +RPµµ) (19)

for the electron neutrino ratio and

Rµ = η

(
Pee +

1
R
Pµµ

)
(20)

for the muon neutrino ratio. The value of R is theoretically
well determined to be about R � 3 at E � 10GeV [12].

The energy of the measured multi-GeV neutrinos is
assumed to be E = 10GeV with negligible uncertainty
compared to E and we set ∆E/E � 0. The path length
for a neutrino that was detected in a bin corresponding to
the zenith angle θ is given by

L(θ) =
√
r2 cos2 θ + 2rd+ d2 − r cos θ, (21)

as is easily obtained from geometrical considerations. Here
r is the radius of the Earth and d is the typical altitude of
the neutrino production point in the atmosphere, which
we assumed to be d = 10 km. The uncertainty in path
length is mainly determined by∆ cos θ = 0.2 and therefore

∆L =
∣∣∣∣ ∂L(θ)∂ cos θ

∣∣∣∣∆ cos θ =
rL

L+ r cos θ
∆ cos θ. (22)

The damping factor γ is thus a function of θ:

γ � ∆L

E
. (23)

4 The minimization procedure

According to the last section, we have 24 data points which
we can use for the fit to the parameters of the theory: the
five bins for e-like events, the five bins for µ-like events
and the 14 data points for the solar neutrinos.

The function used to obtain the parameters is given
by

χ(θ1, θ2, θ3, ∆m2, ∆M2) =
1

wtot

×
{

5∑
i=1

we,i
1

R2
e,i(exp)

[Re,i − Re,i(exp)]
2

+
5∑

i=1

wµ,i
1

R2
µ,i(exp)

[Rµ,i − Rµ,i(exp)]
2

+
14∑

i=1

wsun,i
1

P 2
sun,i(exp)

[Psun,i − Psun,i(exp)]
2

}
,(24)

where the first two sums run over the five bins and the
third one over the 14 data points for the solar neutrinos.
The weights have been taken as
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Table 1. Best point values of the mass parameters in the various mass regions. All numerical values are given in units of eV2

Best point values for ∆m2 10−4 ≤ ∆M2 ≤ 10−3 10−3 ≤ ∆M2 ≤ 10−2 10−2 ≤ ∆M2 ≤ 10−1 10−1 ≤ ∆M2 ≤ 1 1 ≤ ∆M2 ≤ 10

10−11 ≤ ∆m2 ≤ 10−10 6.02 × 10−11 6.01 × 10−11 5.94 × 10−11 5.79 × 10−11 5.77 × 10−11

10−10 ≤ ∆m2 ≤ 10−9 4.42 × 10−10 4.44 × 10−10 4.35 × 10−10 4.25 × 10−10 4.08 × 10−10

10−9 ≤ ∆m2 ≤ 10−8 10−9 10−9 10−8 10−9 10−8

10−8 ≤ ∆m2 ≤ 10−7 10−8 1.04 × 10−8 10−7 10−7 10−7

10−7 ≤ ∆m2 ≤ 10−6 10−7 10−7 10−6 10−6 10−6

10−6 ≤ ∆m2 ≤ 10−5 10−6 10−6 10−5 10−5 10−5

10−5 ≤ ∆m2 ≤ 10−4 10−5 10−5 10−4 10−4 10−4

10−4 ≤ ∆m2 ≤ 10−3 9.28 × 10−4 10−4 8.70 × 10−4 7.77 × 10−4 7.20 × 10−4

10−3 ≤ ∆m2 ≤ 10−2 10−3 10−3 10−3 10−3 10−3

Best point values for ∆M2 10−4 ≤ ∆M2 ≤ 10−3 10−3 ≤ ∆M2 ≤ 10−2 10−2 ≤ ∆M2 ≤ 10−1 10−1 ≤ ∆M2 ≤ 1 1 ≤ ∆M2 ≤ 10

10−11 ≤ ∆m2 ≤ 10−10 10−3 1.03 × 10−3 4.25 × 10−2 10−1 1.33

10−10 ≤ ∆m2 ≤ 10−9 9.92 × 10−4 1.01 × 10−3 3.89 × 10−2 10−1 6.00

10−9 ≤ ∆m2 ≤ 10−8 9.89 × 10−4 10−3 3.84 × 10−2 10−1 1.59

10−8 ≤ ∆m2 ≤ 10−7 9.89 × 10−4 10−3 3.83 × 10−2 10−1 7.54

10−7 ≤ ∆m2 ≤ 10−6 9.89 × 10−4 10−3 3.84 × 10−2 10−1 2.02

10−6 ≤ ∆m2 ≤ 10−5 9.89 × 10−4 10−3 3.84 × 10−2 10−1 3.10

10−5 ≤ ∆m2 ≤ 10−4 9.82 × 10−4 10−3 3.82 × 10−2 10−1 5.66

10−4 ≤ ∆m2 ≤ 10−3 10−4 10−3 10−2 10−1 8.31

10−3 ≤ ∆m2 ≤ 10−2 10−4 1.30 × 10−3 10−2 10−1 6.67

we,i = Re,i(exp)/∆Re,i(exp), (25)
wµ,i = Rµ,i(exp)/∆Rµ,i(exp), (26)

wsun,i = Psun,i(exp)/∆Psun,i(exp), (27)

wtot =
5∑

i=1

we,i +
5∑

i=1

wµ,i +
14∑

i=1

wsun,i. (28)

The mixing angles were constrained to the interval [0, π/2],
whereas for the mass squared differences we assumed one
of them to be in the range 10−11 eV2 ≤ ∆m2 ≤ 10−2 eV2

and the other one in 10−4 eV2 ≤ ∆M ≤ 10 eV2. Since
these large parameter ranges yield no numerically sta-
ble solution, we minimized function (24) for 45 parameter
ranges corresponding to all combinations of values for the
mass squared differences between

10−11 eV2 ≤ ∆m2 ≤ 10−10 eV2,

10−10 eV2 ≤ ∆m2 ≤ 10−9 eV2,

...
...

10−3 eV2 ≤ ∆m2 ≤ 10−2 eV2

for the small mass squared difference and

10−4 eV2 ≤ ∆M2 ≤ 10−3 eV2,

10−3 eV2 ≤ ∆M2 ≤ 10−2 eV2,

...
...

1 eV2 ≤ ∆M2 ≤ 10 eV2

for the larger one.

Following [1], we chose the following strategy to deal
with the flux uncertainty factor η: During the search for
the minima of the function (24), we set it equal to unity,
i.e., we neglected the flux uncertainty. The solutions ob-
tained in this way were then tested for their stability with
respect to variations of η, see Sect. 8.

To minimize the function χ in (24) we generated N =
106 random values for each of the five parameters in the
corresponding range such that we obtained N values of
the minimization function. After that we picked the pa-
rameter set that yielded the smallest value for the func-
tion and repeated this procedure n = 20 times. Each of
the obtained n parameter sets then served as starting val-
ues for a deterministic minimization procedure, using a
sequential quadratic programming method such that one
obtains again n parameter sets as an end result.

5 Solutions of the minimization problem

The solutions to the minimization problem can best be
obtained by considering tables like Table 1, where the best
point values for the two mass squared differences for each
of the investigated mass regions are shown. One can see
that for most of the mass regions, at least one of the two
mass squared differences was obtained on one of the region
boundaries. In this case, we assumed that the value of the
corresponding mass squared difference converges towards
a better minimum in one of the neighbor regions. Thus,
a given parameter region was only considered to contain
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Table 2. Lines of values for the mass squared differences obtained within the boundaries. A capital “M” denotes a value for
∆M2 obtained within the boundaries, whereas “m” stands for a corresponding value for ∆m2. The regions labeled by “M m”
contain solutions of the minimization problem. All numerical values are given in units of eV2

10−4 ≤ ∆M2 ≤ 10−3 10−3 ≤ ∆M2 ≤ 10−2 10−2 ≤ ∆M2 ≤ 10−1 10−1 ≤ ∆M2 ≤ 1 1 ≤ ∆M2 ≤ 10

10−11 ≤ ∆m2 ≤ 10−10 m M m M m m M m

10−10 ≤ ∆m2 ≤ 10−9 M m M m M m m M m

10−9 ≤ ∆m2 ≤ 10−8 M M M

10−8 ≤ ∆m2 ≤ 10−7 M m M M

10−7 ≤ ∆m2 ≤ 10−6 M M M

10−6 ≤ ∆m2 ≤ 10−5 M M M

10−5 ≤ ∆m2 ≤ 10−4 M M M

10−4 ≤ ∆m2 ≤ 10−3 m m m M m

10−3 ≤ ∆m2 ≤ 10−2 M M

Table 3. Best point values of the minimization function in the various mass regions. The mass squared differences ∆m2 and
∆M2 are given in units of eV2

Best point values for χ 10−4 ≤ ∆M2 ≤ 10−3 10−3 ≤ ∆M2 ≤ 10−2 10−2 ≤ ∆M2 ≤ 10−1 10−1 ≤ ∆M2 ≤ 1 1 ≤ ∆M2 ≤ 10

10−11 ≤ ∆m2 ≤ 10−10 7.2803 × 10−3 7.2842 × 10−3 9.6916 × 10−3 1.1829 × 10−2 1.9867 × 10−2

10−10 ≤ ∆m2 ≤ 10−9 3.7700 × 10−3 3.7677 × 10−3 7.4108 × 10−3 1.0046 × 10−2 1.9245 × 10−2

10−9 ≤ ∆m2 ≤ 10−8 3.8319 × 10−3 3.8337 × 10−3 7.4992 × 10−3 1.0130 × 10−2 1.9360 × 10−2

10−8 ≤ ∆m2 ≤ 10−7 3.8319 × 10−3 3.8338 × 10−3 7.4992 × 10−3 1.0970 × 10−2 1.9360 × 10−2

10−7 ≤ ∆m2 ≤ 10−6 3.8320 × 10−3 3.8338 × 10−3 7.4991 × 10−3 1.0130 × 10−2 1.9360 × 10−2

10−6 ≤ ∆m2 ≤ 10−5 3.8322 × 10−3 3.8342 × 10−3 7.4971 × 10−3 1.0127 × 10−2 1.9353 × 10−2

10−5 ≤ ∆m2 ≤ 10−4 3.8345 × 10−3 3.8389 × 10−3 7.3147 × 10−3 9.8697 × 10−3 1.8603 × 10−2

10−4 ≤ ∆m2 ≤ 10−3 3.8501 × 10−3 3.9166 × 10−3 4.1743 × 10−3 4.8230 × 10−3 6.6859 × 10−3

10−3 ≤ ∆m2 ≤ 10−2 3.9166 × 10−3 4.0943 × 10−3 4.2677 × 10−3 5.1945 × 10−3 7.2727 × 10−3

a solution to the minimization problem, if both values
of the mass squared differences were obtained within the
boundaries of the region. Note that the values obtained for
∆M2 are almost randomly distributed in the last column
of Table 1, i.e., in the range 1 eV2 ≤ ∆M2 ≤ 10 eV2. This
is due to a too large value of the damping factor γ in (10)
such that the minimization function becomes independent
of this parameter. Only ∆m2 and the mixing angles are
in this case fitted to the experimental data.

To keep overview over the various considered parame-
ter regions one can consider Table 2. Here a region where
a value for ∆M2 was obtained within the boundaries is
marked with an “M”, whereas a region with a corre-
sponding value for ∆m2 is marked with an “m”. One ob-
tains in this way eight regions, marked “M m” in Table 2,
where the mass squared differences are within the region
boundaries. Seven of these regions are contained in the
first two rows of Table 2, whereas the eighth one was ob-
tained within the range 10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2,
1 eV2 ≤ ∆M2 ≤ 10 eV2. The parameter values obtained
from the minimization procedure with the mass squared
differences constrained to these regions correspond to the
possible solutions of the minimization problem. One no-
tices that the regions marked with “M m” split Table 2
in three distinct areas, corresponding to three types of
solutions, as we will see.

The first of these interesting areas is the one containing
the parameter regions in the upper left corner of Table 2,
i.e., the nine regions in the range 10−11 eV2 ≤ ∆m2 ≤
10−8 eV2, 10−4 eV2 ≤ ∆M2 ≤ 10−1 eV2. In this range,
there are all together five possible solutions, i.e., mass re-
gions where the mass squared differences were obtained
within the region boundaries. To pick the best of the pos-
sible solutions for this type, consider Table 3, where the
best point values for the minimization function (24) are
shown. The smallest value of the minimization function
was obtained in the region corresponding to 10−10 eV2 ≤
∆m2 ≤ 10−9 eV2, 10−3 eV2 ≤ ∆M2 ≤ 10−2 eV2. In all
surrounding regions, we obtained values for the minimiza-
tion function, which are larger, such that there seems in-
deed to be a minimum in the region specified above. Thus,
the corresponding parameter set is a solution of the min-
imization problem, and we will denote it by Solution 1 in
what follows. Considering the rest of Table 3, one can see
that this solution corresponds to the smallest value of the
minimization function in the whole investigated parame-
ter range, which means that it provides the best fit to the
experimental data, as will be seen in Sect. 7. Note that the
value of the minimization function in the parameter range
containing Solution 1 is very close to the one obtained in
the region 10−10 eV2 ≤ ∆m2 ≤ 10−9 eV2, 10−4 eV2 ≤
∆M2 ≤ 10−3 eV2. Furthermore, the values for the mass
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Table 4. Parameter values for the three obtained solutions

Solution 1 χ ≈ 3.7677 × 10−3

θ1(◦) θ2(◦) θ3(◦) ∆m2(eV2) ∆M2(eV2)

Best point 45.98 10.43 45.62 4.44 × 10−10 1.01 × 10−3

Average with errors 45.17 ± 1.86 11.03 ± 0.85 43.67 ± 2.87 (6.64 ± 2.13) × 10−10 (1.02 ± 0.02) × 10−3

Solution 2 χ ≈ 6.6859 × 10−3

θ1(◦) θ2(◦) θ3(◦) ∆m2(eV2) ∆M2(eV2)

Best point 31.34 47.38 14.64 7.20 × 10−4 8.13
Average with errors 31.35 ± 0.02 47.37 ± 0.02 14.62 ± 0.05 (7.20 ± 0.01) × 10−4 6.30 ± 2.48

Solution 3 χ ≈ 1.9245 × 10−2

θ1(◦) θ2(◦) θ3(◦) ∆m2(eV2) ∆M2(eV2)

Best point 38.47 29.39 24.72 4.08 × 10−10 6.00
Average with errors 38.22 ± 0.49 29.09 ± 1.27 34.50 ± 17.61 (4.34 ± 0.97) × 10−10 6.03 ± 2.65

squared differences obtained within these two regions are
rather close to each other, and one cannot really distin-
guish if these two possible solutions correspond to the
same minimum or to two distinct minima very close to
each other.

The second interesting area of Table 2 contains six pa-
rameter regions in the range 10−5 eV2 ≤ ∆m2 ≤ 10−3 eV2,
10−1 eV2 ≤ ∆M2 ≤ 10 eV2. Here a second type of solution
is obtained in the region 10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2,
1 eV ≤ ∆M2 ≤ 10 eV2, i.e., in the last column, eighth row
of Table 2. We will denote this solution by Solution 2 in
what follows. Considering now Table 3, one can see that
in one of the neighbor regions we obtained a smaller value
for the minimization function. One has therefore only a
“local” minimum inside the region containing Solution 2,
and the values of the minimization function in the sur-
rounding regions do not converge that obviously towards
this region, as they did in the case of Solution 1. How-
ever, in all the surrounding regions at least one of the
mass squared differences was obtained on one of the re-
gion boundaries, which is why we will consider the region
10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2, 1 eV ≤ ∆M2 ≤ 10 eV2 to
contain the second solution of the minimization problem.
Comparing the corresponding value of the minimization
function to the one of Solution 1, one sees that this sec-
ond solution provides a less exact fit to the experimental
data.

Finally, the third interesting area is situated in the
upper right corner of Table 2, in the range 10−11 eV2 ≤
∆m2 ≤ 10−9 eV2, 10−1 eV2 ≤ ∆M2 ≤ 10 eV2. Here two
regions with both mass squared differences within the re-
gion boundaries are obtained. Consideration of Table 3
tells us that the smallest value for the minimization func-
tion was obtained in the parameter region 10−10 eV2 ≤
∆m2 ≤ 10−9 eV2, 1 eV2 ≤ ∆M2 ≤ 10 eV2. Thus, we ob-
tain a third type of solution of the minimization problem,
denoted by Solution 3 in what follows. As in the case of

Solution 2, there are neighbor regions with smaller val-
ues for the minimization function, but they both have at
least one of the mass squared differences on one of the re-
gion boundaries. Note that the value of the minimization
function is about five times larger for Solution 3 than the
one corresponding to Solution 1, and roughly three times
larger than the one corresponding to Solution 2.

6 Interpretation of the obtained solutions

The parameter values for the three solutions obtained
from the analysis in the last section are shown in Table 4.
Here the average value obtained from the n = 20 mini-
mizations are depicted, together with the corresponding
standard deviations as well as the best point values. So-
lution 1 actually corresponds to the most common three
flavor neutrino oscillation scenario, with one of the mass
squared differences in the “just-so” domain (10−11eV2–
10−9eV2) and the other one in the range of possible solu-
tions of the atmospheric neutrino puzzle (10−4eV2–
10−2eV2). As for our solution, in this common scenario
the values of the mixing angles are normally a set with
a small value for θ2, and values around 45◦ for the other
two mixing angles, θ1 and θ3, i.e., one has bimaximal mix-
ing. The three flavor oscillation scenario can in this case be
shown to decouple into two independent oscillation scenar-
ios involving two flavors [4]. The two flavor oscillation sce-
nario with the small mass squared difference is then com-
monly used to describe the solar electron neutrino deficit
in terms of νe–νµ oscillations, whereas the scenario with
the larger mass squared difference is assumed to describe
the atmospheric muon neutrino deficit in terms of νµ–ντ

oscillations. However, this approximation is only exact in
the case θ2 → 0, and the nonzero value of this angle causes
a mixing of these two decoupled two flavor scenarios. This
influences in turn the values obtained for the mass squared
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differences, which might explain the deviation of our re-
sult for the large mass parameter ∆M2 = 1.01×10−3 eV2

from the Super-Kamiokande result ∆M2 = 3.5×10−3 eV2

[9] which was obtained in the framework of a two flavor
oscillation scenario. Note that we obtained this bimaximal
solution without putting any restrictions on the parame-
ters. Furthermore, the value we obtained for the second
mixing angle θ2 � 10◦ implies that sin2 θ2 � 0.03, which
is in accordance with the upper bound obtained from the
CHOOZ experiment sin2 θ2 ≤ 0.05 [4]. A disadvantage of
Solution 1 is the rather large standard deviation of the
value obtained for ∆m2, see Table 4.

Solution 1 (the bimaximal solution) has been obtained
also by Barger and Whisnant [3] using a vacuum three fla-
vor neutrino model together with solar and atmospheric
neutrino data. However, they obtained this solution in a
way rather different from ours. First, they fitted ∆M2,
θ1 and θ2 to the atmospheric data and obtained ∆M2 ∼
3 × 10−3 eV2, θ1 = π/4 and θ2 = 0. Then they fitted
∆m2, θ2 and θ3 to the solar data and obtained ∆m2 ∼
7 × 10−11 eV2, θ2 = 0 and θ3 � π/4. From these fits they
concluded that the best fit to the combined solar and at-
mospheric problem is simply given by the union of the
two parameter sets, since the only common parameter is
θ2 and it is zero in both separate fits. Thus, the same re-
sult (bimaximal vacuum mixing) has been obtained with
at least two different methods, which should speak in favor
of this result.

Solution 2, on the other hand, is characterized by a
value for the minimization function, which is twice as large
as the one corresponding to Solution 1, but all parame-
ters, except for the large mass squared difference, were ob-
tained with very small standard deviations. As discussed
earlier, the minimization function is in this mass range
independent of ∆M2. This means that one obtains ran-
dom numbers for this parameter, which explains the large
standard deviation of ∆M2. Only the mixing angles and
∆m2 are in this case fitted to the experimental data. Here
the small mass squared difference is lying in the range
of possible solutions to the atmospheric neutrino puzzle,
whereas the large one is compatible with the results of the
Liquid Scintillator Neutrino Detector (LSND) experiment
[13], which yielded a value for the mass squared difference
in the eV-range within the framework of a two flavor os-
cillation scenario. However, one can see from Table 4 that
the value obtained for the second mixing angle is maximal,
i.e., θ2 � 45◦ and, unlike for the first solution, it is there-
fore in this case not possible to reduce the three flavor
oscillation scenario to two oscillation scenarios involving
two flavors.

Finally, Solution 3 has the major disadvantage of a
rather large value of the minimization function compared
to the other two solutions, as discussed in the last section.
The remarkably large standard deviation of the large mass
squared difference can be explained as in the case of Solu-
tion 2, but Solution 3 also shows a rather large standard
deviation of the third mixing angle θ3. This solution is
actually an “intersection” of the first two solutions, with
one of the mass squared differences in the “just-so” range
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and the other one in the range obtained by LSND. All
three mixing angles have values around θi � 30◦, where
i = 1, 2, 3, which means that it is, like in the case of Solu-
tion 2, not possible to decouple the three flavor oscillation
scenario into a pair of two flavor oscillation scenarios.

7 Discussion of the obtained fits

Figures 1–3 show the results of the fit. The best point
probabilities obtained from the three solutions are de-
picted as well as compared to the corresponding exper-
imental data including error bars.

Let us first consider the results of the fit to the at-
mospheric electron neutrino data, shown in Fig. 1. Here
Solution 1 and Solution 3 provide the best fits to the ex-
perimental data. Solution 2 shows larger deviations, espe-
cially for the two bins with the smallest zenith angles, i.e.,
the largest values of cos θ. The neutrinos measured in these
two bins come from right above the detector, which means
that the background of cosmic particles is not shielded by
the Earth. The experimental data corresponding to these
zenith angles have accordingly the largest experimental
deviations, and from (25)–(27) one can see that these bins
therefore correspond to the smallest weights. This explains
why the fit is less exact for these zenith angles. The fact
that one obtains a zenith angle independent fit for Solu-
tion 3 can be understood from consideration of the oscil-
lation lengths

Lij =
4πE

|∆m2
ij |

, i, j = 1, 2, 3, i �= j, (29)

where E is again the neutrino energy and the∆m2
ij are the

mass squared differences. This solution has one of the mass
squared differences in the “just-so” range and the other
one in the eV-range. The oscillation length corresponding
to the small mass squared difference is then far too long to
make it possible for the experiment to see any variations in
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the oscillation probability, whereas in the case of the large
mass squared difference the oscillations wash out before
the neutrinos reach the detector, due to a too large value
of the damping factor γ in (10).

Considering next the fit to the atmospheric muon neu-
trino data, shown in Fig. 2, one clearly sees that here So-
lution 1 provides the best fit. Solution 2 has again larger
deviations for the two bins with the smallest zenith angle,
which as before can be explained by the fact that these
bins have the largest experimental errors. Solution 3 pro-
vides again a constant fit to the experimental data, for the
same reasons as the ones discussed above. It appears that
this solution is definitely not capable of explaining the
zenith angle dependence of the atmospheric muon neu-
trino flux measured by the Super-Kamiokande detector,
and therefore this solution can be ruled out.

Finally, all three solutions provide rather good fits to
the solar neutrino data, see Fig. 3. Solution 1 and Solu-
tion 3 are seen to yield a constant oscillation probability

up to an energy of about 9MeV. Above that energy the
oscillation length becomes of the same order of magnitude
as the Sun–Earth distance such that the oscillation prob-
ability obtained from the two solutions starts to vary with
energy. Solution 2 yields a constant fit to the solar neu-
trino data, which can be understood bearing in mind that
this solution is characterized by one mass parameter in the
range 10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2 and the other one in
the eV-range. In both cases, the corresponding oscillation
lengths are much shorter than the Sun–Earth distance,
and all oscillatory effects wash out before the neutrinos
reach the Earth.

To summarize, only Solution 1 provides a good fit to all
three types of experimental data, whereas Solution 3 can
be definitely ruled out by the zenith angle dependence of
the atmospheric muon neutrino data measured by Super-
Kamiokande. It remains now to test the stability of the
obtained solutions with respect to variation of the flux
uncertainty factor introduced in Sect. 4.

8 Stability of the solutions
with respect to the flux uncertainty

As mentioned before, we performed the minimization pro-
cedure setting the flux uncertainty factor η introduced in
(19) and (20) equal to one. But this factor can vary be-
tween 0.8 ≤ η ≤ 1.2 and therefore one has to test the
solutions obtained in the last section for stability with re-
spect to variations of this flux uncertainty factor.

We saw in the last section that the solution we denoted
by Solution 3 in Table 4 can be ruled out by the zenith
angle dependence of the atmospheric muon neutrino flux
measured by Super-Kamiokande. We will therefore only
test the stability of Solution 1 and Solution 2. To do this,
we applied basically the same minimization procedure as
the one described in Sect. 4, but this time for nine equidis-
tant values of the flux uncertainty factor between η = 0.8
and η = 1.2. Again, the angles were restricted to the in-
tervals 0 ≤ θi ≤ π/2, where i = 1, 2, 3.

In the case of Solution 1, the small mass squared differ-
ence was constrained to 10−10 eV2 ≤ ∆m2 ≤ 10−9 eV2. To
choose an interval for the large mass squared difference one
has to recall that in one of the neighboring regions of Solu-
tion 1, we obtained parameter values which are very close
to those corresponding to this solution, as we mentioned
in Sect. 5. This could mean both that the two parameter
sets correspond to two distinct minima or to the same
one. We will here follow the latter assumption, i.e., we
will assume that there is one minimum of the function (24)
somewhere between these two parameter regions. To avoid
obtaining the mass squared differences on the boundary
between the two regions, we widened the interval for ∆M2

to 10−4 eV2 ≤ ∆M2 ≤ 10−2 eV2. In the case of Solution
2, we restricted both mass parameters to the same inter-
vals as in Sect. 4, i.e., to 10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2 and
1 eV2 ≤ ∆M2 ≤ 10 eV2.

Figure 4 shows the best point values for the five pa-
rameters, which were obtained for the different values of
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the flux uncertainty factor η in the case of Solution 1. All
three mixing angles show the largest deviations from the
value obtained for η = 1 for the smallest values of the
flux uncertainty factor, whereas for η > 1 they become al-
most stable. Somewhat surprising is the high stability of
the small mass squared difference, since it was obtained
from the minimization procedure with large standard de-
viations. The large mass squared difference, finally, grows
almost linearly with the flux uncertainty factor, but re-
mains within a region around ∆M2 = 10−3 eV2.

The dependence of the parameters corresponding to
Solution 2 on the flux uncertainty factor is shown in Fig. 5.
The mixing angles are clearly seen to be more stable than
in the case of Solution 1; they remain within ranges of
10◦ or less around their values at η = 1. The small mass
squared difference, on the other hand, varies much more
than the one corresponding to Solution 1. Finally, the large
mass squared difference shows a random distribution, as

expected, since the minimization function is independent
of this parameter in the mass region corresponding to So-
lution 2, as pointed out in Sect. 5.

9 Summary and conclusions

We have fitted the five parameters of a three flavor neu-
trino oscillation scenario to experimental values obtained
by the Super-Kamiokande Collaboration for atmospheric
and solar neutrinos. To obtain numerically stable solu-
tions, we divided a large region for the mass squared dif-
ference parameters into 45 smaller regions and performed
the fit for each of these regions. A mass region was con-
sidered to contain a solution of the minimization problem,
if the best point values for mass squared differences were
obtained from the fit within the region boundaries. Fur-
thermore, the best point value of the minimization func-
tion was supposed to go through a minimum in such a re-
gion if compared to the values obtained in the surround-
ing regions. In this way, three types of solutions of the
minimization problem were obtained, out of which the
best one corresponds to the most common three flavor
neutrino oscillation scenario, with one mass parameter
in the “just-so” range and the other one in the interval
10−4 eV2 ≤ ∆M2 ≤ 10−3 eV2. As in this common sce-
nario, the first and the third mixing angle of this solution
were obtained to be maximal, θ1 � 45◦ and θ3 � 45◦,
respectively, whereas the second one was obtained to be
small, θ2 � 10◦, which is below the CHOOZ upper bound.
This solution corresponds to the global minimum of the
minimization function in the considered parameter range,
and it was the only one that provides a good fit to all
three types of data considered. As a disadvantage the value
of the large mass squared difference was obtained with a
rather large standard deviation.

The second solution is characterized by a value of the
small mass squared difference in the range, which contains
possible solutions of the atmospheric neutrino problem,
i.e., between 10−4 eV2 and 10−3 eV2 but by a large mass
squared difference in the LSND range, i.e., between 1 eV2

and 10 eV2. Here the mixing angles θ1 and θ2 were ob-
tained to be maximal, whereas for the third one there was
obtained a smaller value, θ3 � 15◦. This solution provides
a comparably worse fit to the atmospheric electron neu-
trino data, which is the reason for the larger value of the
minimization function corresponding to that solution.

The third solution corresponds to a small mass squared
difference in the range 10−4 eV2 ≤ ∆m2 ≤ 10−3 eV2 and a
larger one in the LSND range. Here all three mixing angles
were obtained quite close to each other, θ1 � 38◦, θ2 �
29◦, θ3 � 25◦, the latter one with a rather large standard
deviation. This solution provides good fits to the atmo-
spheric electron neutrino data and the solar neutrino data.
However, the oscillation probabilities for the atmospheric
muon neutrino data corresponding to this solution show
no zenith angle dependence such that this solution can be
ruled out by the results obtained by Super-Kamiokande.
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